Within the EU Graphene Flagship Project, through the collaboration between the C.H.O.S.E. and the "Graphene Cambridge Center" of the University of Cambridge (UCAM), founded and directed by Prof. Andrea C. Ferrari, who is also the Science and Technology Officer and the Chair of the Management Panel of the Graphene Flagship (one of the largest research initiatives ever funded by the European Commission), the first DSSC (Dye-Sensitized Solar Cell) PV (Photo-Voltaic) module, based on Graphene printed interconnects, was realized.

Thanks to these interconnects, corrosion issues that affect the typical silver grids of the DSSC modules have been fixed, thus increasing the structural stability of these devices.

Graphene paste was realized and fabricated via microfluidization at the Graphene Cambridge Center. Graphene-based interconnects of the DSSC module have also allowed to increase the Power Conversion Efficiency (PCE) calculated on Aperture Area, up to 12% with respect to silver-based ones. This result, combined with the greater stability of the devices once compared to the standard ones (made of silver), further rolls out the DSSC technology in the BIPV (Build Integrated Photo-Voltaic) sector and in indoor application.

The obtained results are published in ACS Publications, available at the following link:

Congratulations to Paolo Mariani, Antonio Agresti, Luigi Vesce, Sara Pescetelli, Alessandro Lorenzo Palma, Flavia Tomarchio, Panagiotis Karagiannidis, Andrea C. Ferrari and Aldo Di Carlo


graph solar mod 1

SEM images of (a) Ag layer, (b) graphene coating, (c) cross section of Ag layer, (d) cross section of graphene coating, (e) schematic cross view of Ag-based device, (f) schematic cross view of graphene-based device

graph solar mod 2

Stability test at 85 °C comparing 5 DSSC modules with Ag-vertical interconnects and 5 with graphene ones




logo University of Rome Tor Vergata
Università degli Studi di Roma
"Tor Vergata"

logo Regione Lazio

Questo sito web utilizza i cookie per capire come viene utilizzato il sito e per permettere l'accesso all'area riservata. I cookie non permettono di identificare l'utente. I cookie sono salvati sul tuo browser e sono utlizzati per personalizzare la tua esperienza sul nostro sito web. Continuando la navigazione sul nostro sito senza modificare le impostazioni, accetti il nostro utilizzo dei cookie. Comunque potrai modificare le tue impostazioni dei cookie in qualsiasi momento.