CHOSENEWSPERMEATION BARRIER - ENCAPSULATION SYSTEMS FOR FLEXIBLE AND GLASS-BASED ELECTRONICS AND THEIR APPLICATION TO PEROVSKITE SOLAR CELLS | PRESS RELEASE

PERMEATION BARRIER - ENCAPSULATION SYSTEMS FOR FLEXIBLE AND GLASS-BASED ELECTRONICS AND THEIR APPLICATION TO PEROVSKITE SOLAR CELLS | PRESS RELEASE

September 12, 2019

Permeation Barrier - Encapsulation Systems for Flexible and Glass-based Electronics and their Application to Perovskite Solar Cells

 

Researchers at the Centre for Hybrid and Organic Solar Energy (CHOSE), Department of Electronic Engineering, University of Rome – Tor Vergata, and at the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, have unraveled the effects of architectures, application processes, and water vapor transmission rates (WVTR) of transparent flexible ultra-high permeation barrier films (UHPBFs) applied to substrates with adhesive resins for attaining long lifetimes, and compared these with polyethylene terephthalate (PET), and glass barriers. The effectiveness of barrier/adhesive systems, quantified via calcium tests, depends on barrier orientation, adhesion, handling, defects, storage and application procedures. The researchers applied permeation barriers for the encapsulation of perovskite solar cells and were able to extract a relationship between WVTRs of barrier/adhesive systems and degradation rates of solar cells. Results highlight important factors which will help those developing strategies relating to encapsulation, barrier, adhesive and sealant systems, and stable optoelectronic devices on glass and flexible substrates that can be effective in cost as well as performance.

PERMEATION BARRIER

For more information see press release and https://doi.org/10.1002/aelm.201800978

 

Open the Press Release

 

 

logo University of Rome Tor Vergata
Università degli Studi di Roma
"Tor Vergata"


logo Regione Lazio

This website uses cookies to allow us to see how the site is used. The cookies cannot identify you. Cookies are files stored in your browser and are used by websites to help personalise your web experience. By continuing to use our website without changing the settings, you are agreeing to our use of cookies. However you can change your cookie settings at any time.