ABSTRACT
The PTAA polymer is often used as a hole transport material (HTM) for high-efficiency perovskite solar cells (PSCs). However, there are great differences within the solar cell efficiencies reported. Herein, we show that when increasing PTAA molecular weight (MW) from 10 to 115 kDa, the power conversion efficiency also increases. We analyze how the differences in MW influence the interfacial carrier losses in the PSCs under operando conditions using advanced photoinduced spectroscopic techniques. Moreover, we compare kinetics and structural/morphological effects by studying different PTAA MW films. Our results show that the observed differences within the reported PSC efficiencies are due to the differences in carrier recombination kinetics, which are influenced by the differences in the polymer MW.
Authors:
Narges Yaghoobi Nia, Maria Méndez, Barbara Paci, Amanda Generosi, Aldo Di Carlo, Emilio Palomares
https://doi.org/10.1021/acsaem.0c00956
ACS Applied Energy Materials
ABSTRACT
Organic–inorganic lead halide perovskite has recently emerged as an efficient absorber material for solution process photovoltaic (PV) technology, with certified efficiency exceeding 25%. The development of low-temperature (LT) processing is a challenging topic for decreasing the energy payback time of perovskite solar cell (PSC) technology. In this context, the LT planar n–i–p architecture meets all the requirements in terms of efficiency, scalability, and processability. However, the long-term stability of the LT planar PSC under heat and moisture stress conditions has not been carefully assessed. Here, a detailed study on thermal and moisture stability of large-area (1 cm2) LT planar PSCs is presented. In particular, the key role in thermal stability of potassium iodide (KI) insertion in the perovskite composition is demonstrated. It is found that defect passivation of triple-cation perovskite by KI doping inhibits the halide migration induced by thermal stress at 85 °C and delays the formation of degradation subproducts. T80, defined as the time when the cell retains 80% of initial efficiency, is evaluated both for reference undoped devices and KI-doped ones. The results show that T80 increases 3 times when KI doping is used. Moreover, an HTL-free architecture where the Au top electrode is replaced with low-T screen-printable carbon paste is proposed. The combination of the carbon-based HTL-free architecture and KI-doped perovskite permits T80 to increase from 40 to 414 h in unsealed devices.
Authors:
Emanuele Calabrò, Fabio Matteocci, Barbara Paci, Lucio Cinà, Luigi Vesce, Jessica Barichello, Amanda Generosi, Andrea Reale, Aldo Di Carlo
Publication Date: 26 June 2020
https://doi.org/10.1021/acsami.0c05878
ACS Chemistry for Life
ABSTRACT
Reducing the energy demand and dependency on fossil fuels is crucial for improving the sustainability of greenhouses, which are the most energy intensive systems in the agricultural sector. Renewable technologies represent a key option to meet the greenhouse energy demands. Agrivoltaics has recently emerged as a strategy to combine farming activity and power generation through photovoltaics (PV). However, PV systems retrofitting needs to consider the interactions with the existing greenhouse structure, as well as the energy requirements of the equipment for climate control. The influences of PV shading on agronomic parameters have also to be carefully considered. Firstly, this review examines the response of plants to the light and the fundamental aspects of greenhouse facilities. Then, the state-of-the-art of PV systems applied to greenhouses is thoroughly analysed. Simulation studies and experimental works are examined to highlight the effects of PV technologies and module arrangements on energy production and plant growth. Particular attention is devoted to new PV technologies, i.e. organic, dye-sensitized and perovskite solar cells, because of their semi-transparency and flexibility, allowing the easy integration of PV modules into existing or newly conceived greenhouse structures.
The review has highlighted that the new PV technologies have an enormous potential due to the possibility of tuning their spectral features according to the characteristics of plants and to the capability of optimizing the use of solar energy into high-tech greenhouses. Shading through these innovative systems has also demonstrated to create a suitable atmosphere for crop growth especially in hot and tropical regions.
Authors:
Luca La Notte, Lorena Giordano, Emanuele Calabrò, Roberto Bedini, Giuseppe Colla, Giovanni Puglisi, Andrea Reale
Publication date: 25 September 2020
https://doi.org/10.1016/j.apenergy.2020.115582
Science Direct
ABSTRACT
Carbon nanotube/polymer composites have recently received considerable attention for thermoelectric (TE) applications. The TE power factor can be significantly improved by forming composites with carbon nanotubes. However, the formation of a uniform and well-ordered nanocomposite film is still challenging because of the creation of agglomerates and the uneven distribution of nanotubes. Here, we developed a facile, efficient, and easy-processable route to produce uniform and aligned nanocomposite films of P3HT and carbon nanotube forest (CNTF). The electrical conductivity of a pristine P3HT film was improved from ∼10–7 to 160 S/cm thanks to the presence of CNTF. Also, a further boost in TE performance was achieved using two additives, lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) and tert-butylpyridine. By adding the additives to P3HT, the degree of interchain order increased, which facilitated the charge transport through the composite. Under the optimal conditions, the incorporation of CNTF and additives led to values of the Seebeck coefficient, electrical conductivity, and power factor up to rising 92 μV/K, 130 S/cm, and 110 μW/m K2, respectively, at a temperature of 344.15 K. The excellent TE performance of the hybrid films originates from the dramatically increased electrical conductivity and the improved Seebeck coefficient by CNTF and additives, respectively.
Authors:
Saeed Mardi, Khabib Yusupov, Patricia M. Martinez, Anvar Zakhidov, Alberto Vomiero and Andrea Reale
Publication Date: January 7, 2021
https://doi.org/10.1021/acsomega.0c02663
ACS Publications
ABSTRACT
We present Z-Type Dye Sensitized Solar Modules (DSSMs) with screen printed graphene-based vertical interconnects. This prevents corrosion of interconnects in contact with electrolytic species, unlike conventional Ag interconnects. By enlarging the width of single cells, or by increasing the number of cells, we get an enhancement of the aperture power conversion efficiency ∼+12% with respect to Ag-based modules, with 1000 h stability under 85 °C stress test. This paves the way to original design layouts with decreased dead area and increased generated power per aperture area.
Authors:
Paolo Mariani, Antonio Agresti, Luigi Vesce, Sara Pescetelli, Alessandro Lorenzo Palma, Flavia Tomarchio, Panagiotis Karagiannidis, Andrea C. Ferrari and Aldo Di Carlo
https://doi.org/10.1021/acsaem.0c01960
ACS Publications
Publication Date: December 31, 2020
ABSTRACT
Operational stability of perovskite solar cells (PSCs) is rapidly becoming one of the pressing bottlenecks for their upscaling and integration of such promising photovoltaic technology. Instability of the hole transport layer (HTL) has been considered as one of the potential origins of short life-time of the PSCs. In this work, by varying the molecular weight (MW) of doped poly(triarylamine)(PTAA) HTL, we improved by one order of magnitude the charge mobility inside the HTL and the charge transfer at the perovskite/HTL interface. We demonstrate that this occurs via the enhancement of polaron delocalization on the polymeric chains through the combined effect of doping strategy and MW tuning. By using high MW PTAA doped combining three different dopant, we demonstrate stable PSCs with typical power conversion efficiencies above 20%, retain more than 90% of the initial efficiency after 1080 h thermal stress at 85 °C and 87% of initial efficiency after 160 h exposure against 1 sun light soaking. By using this doping-MW strategy, we realized perovskite solar modules with an efficiency of 17% on an active area of 43 cm2, keeping above 90% of the initial efficiency after 800 h thermal stress at 85 °C. These results, obtained in ambient conditions, pave the way toward the industrialization of PSC-based photovoltaic technology.
Authors:
Narges Yaghoobi Nia, Mahmoud Zendehdel, Mojtaba Abdi-Jalebi, Luigi Angelo Castriotta, Felix U. Kosasih, Enrico Lamanna, Mohammad Mahdi Abolhasani, Zhaoxiang Zheng, Zahra Andaji-Garmaroudi, Kamal Asadi, Giorgio Divitini, Caterina Ducati, Richard H. Friend and Aldo Di Carlo
https://doi.org/10.1016/j.nanoen.2020.105685
Nano Energy, Volume 82
In progress (April 2021)
https://www.sciencedirect.com/science/article/abs/pii/S2211285520312581
ABSTRACT
Carbon nanotube/polymer composites have recently received considerable attention for thermoelectric (TE) applications. The TE power factor can be significantly improved by forming composites with carbon nanotubes. However, the formation of a uniform and well-ordered nanocomposite film is still challenging because of the creation of agglomerates and the uneven distribution of nanotubes. Here, we developed a facile, efficient, and easy-processable route to produce uniform and aligned nanocomposite films of P3HT and carbon nanotube forest (CNTF). The electrical conductivity of a pristine P3HT film was improved from ∼10–7 to 160 S/cm thanks to the presence of CNTF. Also, a further boost in TE performance was achieved using two additives, lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) and tert-butylpyridine. By adding the additives to P3HT, the degree of interchain order increased, which facilitated the charge transport through the composite. Under the optimal conditions, the incorporation of CNTF and additives led to values of the Seebeck coefficient, electrical conductivity, and power factor up to rising 92 μV/K, 130 S/cm, and 110 μW/m K2, respectively, at a temperature of 344.15 K. The excellent TE performance of the hybrid films originates from the dramatically increased electrical conductivity and the improved Seebeck coefficient by CNTF and additives, respectively.
Authors:
Saeed Mardi, Khabib Yusupov, Patricia M. Martinez, Anvar Zakhidov, Alberto Vomiero, Andrea Reale
https://doi.org/10.1021/acsomega.0c02663
ACS Omega 2021, 6, 2, 1073–1082
Publication Date: January 7, 2021
ABSTRACT
In this work we demonstrate the beneficial role of MXene doping for both perovskite absorber and electron transporting layer in NiO-based inverted perovskite solar cells. The addition of MXenes permits on one side to easy tune the energy level alignment at perovskite/charge transporting layer interfaces, and on the other side to passivate traps states within the cell structure, which in turn improves charge extraction and collection at the electrodes. The MXene-based engineered cells showed superior performance, with power conversion efficiency exceeding 19% and improved stabilized power output with respect to reference devices. Due to the possibility to finely tune the MXene work function during their chemical synthesis and to their capability in modifying the optoelectronic properties of PSC layers when used as dopant, the proposed approach opens countless ways for engineering inverted PSC structure, strongly promising in term of long-term stability and future scalability on large area devices.
Authors:
D. Saranin, S. Pescetelli, A. Pazniak, D. Rossi, A. Liedl, A. Yakusheva, L. Luchnikov, D. Podgorny, P. Gostischev, S. Didenko, A. Tameev, D. Lizzit, M. Angelucci, R. Cimino, R. Larciprete, A. Agresti, A. Di Carlo
https://doi.org/10.1016/j.nanoen.2021.105771
Nano Energy
Volume 82, April 2021, 105771
ABSTRACT
The use of solution processes to fabricate perovskite solar cells (PSCs) represents a winning strategy to reduce capital expenditure, increase the throughput, and allow for process flexibility needed to adapt PVs to new applications. However, the typical fabrication process for PSC development to date is performed in an inert atmosphere (nitrogen), usually in a glovebox, hampering the industrial scale-up. In this work, we demonstrate, for the first time, the use of double-cation perovskite (forsaking the unstable methylammonium (MA) cation) processed in ambient air by employing potassium-doped graphene oxide (GO-K) as an interlayer, between the mesoporous TiO2 and the perovskite layer and using infrared annealing (IRA). We upscaled the device active area from 0.09 to 16 cm2 by blade coating the perovskite layer, exhibiting power conversion efficiencies (PCEs) of 18.3 and 16.10% for 0.1 and 16 cm2 active area devices, respectively. We demonstrated how the efficiency and stability of MA-free-based perovskite deposition in air have been improved by employing GO-K and IRA.
Authors:
Luigi Angelo Castriotta, Fabio Matteocci, Luigi Vesce, Lucio Cinà, Antonio Agresti, Sara Pescetelli, Alessandro Ronconi, Markus Löffler, Minas M. Stylianakis, Francesco Di Giacomo, Paolo Mariani, Maurizio Stefanelli, Emily Mae Speller, Antonio Alfano, Barbara Paci, Amanda Generosi, Fabio Di Fonzo, Annamaria Petrozza, Bernd Rellinghaus, Emmanuel Kymakis, Aldo Di Carlo
https://doi.org/10.1021/acsami.0c18920
ACS Appl. Mater. Interfaces 2021
Publication Date: March 2, 2021
We fabricated perovskite based solar cells using CH3NH3PbI3-xClx with different hole transporting materials such as Spiro-OMeTAD and P3HT. By tuning the energy level of P3HT and optimizing the device’s fabrication, we reached 9.3% of power conversion efficiency showing that P3HT can be a suitable low cost hole transport material for efficient perovskite based solar cells.
[Di Giacomo et al, J. Power Sources 251, 152 (2014)]
ABSTRACT
In the present work we used some crystallization trends which could be classified as Crystal Engineering (CE) methods, for deposition of a pure cubic-phase thin film of CH3NH3PbI3 at the surface of mesoporous TiO2 layer. Accordingly, by using the CE approach in air, we fabricated high efficiency perovskite solar cells (PSC) and perovskite solar modules (PSM) utilizing several Hole Transport Layers (HTLs). The results show that the CE approach remarkably improved the device performance reaching a power conversion efficiency of 17%, 16.8% and 7% for spiro-OMeTAD, P3HT and HTL free, respectively. Furthermore, perovskite solar modules (active area of 10.1 cm2), could reach an overall efficiency of 13% and 12.1% by using spiro-OMeTAD and P3HT as HTLs, respectively. Sealed modules showed promising results in terms of stability maintaining 70% of the initial efficiency after 350 hours of light soaking at maximum power point.
N. Yaghoobi Nia, M. Zendehdel, F. Matteocci, L. Cinà, A. Di Carlo
J. Mat. Chem. A
6, 659-671
DOI: 10.1039/C7TA08038G
http://pubs.rsc.org/en/content/articlelanding/2018/ta/c7ta08038g#!divAbstract
A new architecture of polymeric cells that foresees the presence of DNA as a constituent layer: it is the result of the study conducted jointly by the new ultrafast spectroscopy laboratory of the Institute "Struttura della Materia" of CNR (Cnr-Ism) and the researchers of the Department of Engineering Electronics of the University of Rome "Tor Vergata" and of CHOSE.
The results of the research are published in Advanced Functional Materials (No. 28 of 27 June 2018):
The complete article can be found at link:
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201707126
Fully sprayed polymer solar cell modules open the way to bring Photovoltaics nominally everywhere, thanks to spray coating conformability to virtually any kind of substrate. If we also add semitransparency, then the range of possible applications gets even broader, from Building-Integrated Photovoltaics to automotive or consumer electronics.
We have set up an automated spray process, completely performed in air, for the fabrication of the first fully spray-coated modules on glass substrates. We have obtained conversion efficiency close to 1% and now the transfer on plastic substrate is in progress, together with the improvement of the efficiency on large area.
Full story available on Energy Technology, in press paper.
ABSTRACT
The first perovskite solar cell (PSC) fabricated directly on a paper substrate with a maximum power conversion efficiency of 2.7% is here reported. The paper PSCs (PPSC) were developed with a low-temperature Paper/Au/SnO2/meso-TiO2/CH3NH3PbI3/Spiro-OMeTAD/MoOx/Au/MoOx architecture utilizing a Au/SnO2 and MoOx/Au/MoOx stack as electron- and hole- extracting electrodes respectively. The transparent MoOx/Au/MoOx electrode had a favourable combination of transmittance (62.5%) and sheet resistance (9 Ω/□). By comparing performance of cells on paper with those fabricated on glass and plastic films with different electrodes, we identify avenues that can help guide future research for improved performance. All the deposition processes used are scalable and compatible with large area printing or evaporation technologies. Paper represents a lightweight, flexible, inexpensive, ubiquitous, and environmentally friendly material, paving the way for integrating perovskite technology with other electronic components as well as for the development of stand-alone PV devices on recyclable and low-cost paper substrates.
Sergio Alexis Castro Hermosa, Janardan Dagar, Andrea Marsella, Thomas M. Brown
IEEE Electron Device Letters
August 2017
DOI: 10.1109/LED.2017.2735178
We have demonstrated the feasibility of the fabrication of a photovoltaic greenhouse roof by using techniques based on solution processing (spray coating and screen printing). The panel ensures the suitable transmittance for plants and is composed of modules connected in series and parallel.
The work was funded by ECOFLECS Project (partners: Aero Sekur SpA, Uni Roma Tor Vergata, UniTuscia, CNR-IBAF).