CHOSERESEARCHPUBLICATIONSLOW TEMPERATURE PROCESS OF HOMOGENEOUS AND PIN-HOLE FREE PEROVSKITE LAYERS FOR FULLY COATED PHOTOVOLTAIC DEVICES UP TO 256 CM2 AREA AT AMBIENT CONDITION

LOW TEMPERATURE PROCESS OF HOMOGENEOUS AND PIN-HOLE FREE PEROVSKITE LAYERS FOR FULLY COATED PHOTOVOLTAIC DEVICES UP TO 256 CM2 AREA AT AMBIENT CONDITION

PVK ISAECT 1

ABSTRACT

The versatility of printing/coating technologies together with the development of new hybrid and organic materials permit to revolutionize the photovoltaic (PV) research and manufacture. Among the new PV concept, perovskite solar cell technology has ascended top efficiencies in few years. The low-cost perspective of this III-GEN PV is however achievable only at industrial production levels. To this end, we developed a simple yet scalable process for production of monolithic Perovskite solar modules (PSMs). Here we use the doctor blade coating technique assisted by a hot air flow. The basic setup is easy to build and permits to obtain a homogeneous and repeatable deposition of the layers forming the PSM. By applying this fabrication method at ambient condition, we fabricated a low temperature module up to 40 cm2 with a conversion efficiency above 11% and a perovskite layer up to 256 cm2, both based on a pinhole free one-step (without any anti-solvent technique) method, demonstrating the scaling up capability of the optimised process.

Authors

Luigi Vesce, Maurizio Stefanelli, Aldo Di Carlo

https://doi.org/10.1109/ISAECT47714.2019.9069678

2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT)

 

 

logo University of Rome Tor Vergata
Università degli Studi di Roma
"Tor Vergata"


logo Regione Lazio

This website uses cookies to allow us to see how the site is used. The cookies cannot identify you. Cookies are files stored in your browser and are used by websites to help personalise your web experience. By continuing to use our website without changing the settings, you are agreeing to our use of cookies. However you can change your cookie settings at any time.